If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13(t^2+6t-5)=0
We multiply parentheses
13t^2+78t-65=0
a = 13; b = 78; c = -65;
Δ = b2-4ac
Δ = 782-4·13·(-65)
Δ = 9464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9464}=\sqrt{676*14}=\sqrt{676}*\sqrt{14}=26\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-26\sqrt{14}}{2*13}=\frac{-78-26\sqrt{14}}{26} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+26\sqrt{14}}{2*13}=\frac{-78+26\sqrt{14}}{26} $
| 1x+9=5x+8 | | 4u-(-2)=10 | | 59x+994x-38=21(50x+73) | | 3/5k=4/10 | | m/4+6=60 | | 1x+5=6x+8 | | 1/2x-3=1/4x+3 | | 5x4=+10 | | -3(2-x)=4(-5+1) | | ?+6k=0 | | 4/c=c-1/18 | | 3+(x-4)=-17-(3x-4) | | 4.75=c+2.3 | | 5x+(3x−1)=4x+(x−1) | | 5x+(3x−1)=4x+(x−1) | | 13t^2+78t-65=0 | | 8x-3x+3=28 | | 5-4x-6=19 | | 20k+4+90+33k-90=180 | | 4x±11=15 | | -2n+9=13 | | 3,693=3r | | -7(1-3x)+3=5x-4+6x | | 00.4=10x | | 11=4+6p+p | | 2(x-+4)=7x+3-5x+5 | | 5-(4x-6)=19 | | 12=2.2r+1 | | .2a+8=9a | | 844=4f | | -7(2-3x)+3=5x-4+6x | | x—308=-157 |